Практическое занятие № 2. Стандартные функции Excel. Категория математических функций.

Цель занятия:

1. Ознакомиться с назначением, синтаксисом и видами стандартных функций.

2. Научиться применять инструмент Мастер функций для вставки функций в ячейку.

3. Научиться решать задачи с применением математических стандартных функций

Функция- это запрограммированная последовательность стандартных вычислений. Она может быть самостоятельной формулой или ее операндом. Каждая функция имеет *имя* и *аргумент*, заключенный в круглые скобки. Если функция имеет несколько аргументов, то они перечисляются в скобках через точку с запятой. Аргументами могут быть *числа, текст, логические значения, ссылки на ячейку или блок ячеек, имя другой функции*. При нарушении синтаксиса записи функции выдается сообщение об ошибке.

Вставить функцию в ячейку можно непосредственным набором с клавиатуры, что не всегда удобно, т.к. *Excel* содержит более 400 встроенных функций и помнить информацию о каждой из них не всегда возможно. В *Excel* имеется специальное средство для работы с функциями – *Мастер функций*, который при работе сначала предлагает выбрать нужную функцию из списка категорий, а затем в окне диалога ввести аргумент.

Мастер функций вызывается командой *Вставка, Функция* или нажатием кнопки *Мастер функций*, расположенной в строке формул

При непосредственном наборе функции нужно активизировать ячейку, куда вставляется функция, набрать знак равенства, затем имя функции и аргумент в круглых скобках. Нельзя вставлять пробелы между именем и скобкой.

<u>Например,</u> =COS(0,5) =EXP(2) =CVMM((A1:A8;7;H5) =SIN(D4)+F5-7 =KOPEHb(ABS(F6-7)) =ПИ()- число 3,14 (функция без аргументов).

Мастер функций

Для удобства выбора нужной функции все их множество разделено на категории в зависимости от назначения: *математические, статистические, логические, текстовые и m.n.* Мастер функций при работе предлагает заполнить два окна:

1. В первом окне необходимо выбрать категорию, к которой относится данная функция.

2. Во втором окне указывается аргумент вставляемой функции.

Работу с мастером функций рассмотрим на примерах вставки функций из различных категорий.

Математические функции

Эту категорию условно разделим на арифметические, тригонометрические и логарифмические функции.

Задание 1. Вычислить корень квадратный из числа 225 (*арифметическая функция*). Для этого выполняем следующие действия:

- 2. Активизировать ячейку, куда вставляется функция, например, А2.
- 3. Вызвать Мастер функций.
- 4. Появляется первое окно диалога (Рисунок 1.).

^{1.} Занести число 225 в ячейку А1.

Поиск функци	141:	
Введите кр	аткое описание действия, которое н , и нажиите кнопку "Найти"	нужно Цайти
Категория:	Математические	~
выберите фу	нкцию:	
ГРАДУСЫ ЗНАК		~
MOEP		_
МОПРЕД МУМНОЖ НЕЧЕТ		~
КОРЕНЬ(чи	сло)	

Рисунок 1. Выбор категории Математические и функции Корень

В этом окне необходимо в поле *Категория* выбрать категорию - *Математические*. Тогда в поле *Выберите* функцию появляется список имен функций этой категории, где выбирается имя нужной функции *КОРЕНЬ* и нажимается кнопка *ОК*.

5. Появляется второе диалоговое окно (Рисунок 2.).

КОРЕНЬ	Число А1	<u>=</u> 225
Возвращает значе	ние квадратного корня.	= 15
	Число число, для которого вычи	сляется квадратный корень.
2	Значение: 15	ОК Отмена

Рисунок 2. Задание аргумента функции

В этом окне нужно задать аргумент в поле ввода. Это могут быть *числа, ссылки на ячейки* (их можно задать выделением ячеек в таблице с помощью мыши), *формулы* и *другие функции*. При этом вводимые данные должны иметь допустимые для данной функции значения (положительные числа), иначе появляется сообщение об ошибке. В нашем примере нужно ввести с клавиатуры адрес ячейки **A1** или выделить мышью **A1**.

Набор закончить нажатием кнопки ОК, после чего в активную ячейку вставляется значение функции (Рисунок 3).

(I mey m	UIL I	<i>.</i>							
	9- ((m) =						X	снига1
Гла	вная	Вставка	Разметка стр	аницы	Формулы	Данны	e	Рецензирование	Ви,
	×	Calibri	- 11 - A	A A	= = =	≫ E	ii i	Общий	-
Вставить	3	жкч	- 😓 -	<u>A</u> -			e -	- % 000 58	400 4,0
Буфер обмен	a Fa	ш	рифт	6	Выравни	вание	6	Число	G.
A2	2	• (*	f _∞ =K	ОРЕНЬ	(A1)				
		А			В			С	
					_			-	
1			225						
-			220						
2			15						
2			-12						
3									
5									

Рисунок 3. Вычисленное значение функции Корень

Аналогично вставляются другие функции из этой категории. Попробуйте вставить другие функции по своему усмотрению.

Вставка вложенных функций

Вложенность функций появляется в том случае, если аргументом является другая функция. Можно использовать до 7 уровней вложенности.

Для ввода другой функции в качестве аргумента необходимо щелкнуть по кнопке выбора функций (стрелка раскрывающегося списка), расположенной в левой части строки формул во втором окне диалога *Мастера функций*.

Задание 2: Вычислить значение функции $\sqrt{|COS(x)|}$. В этом выражении *три функции*: *КОРЕНЬ* с аргументом в виде функции *ABS*, у которой аргументом является функция *COS*

Порядок выполняемых действий:

- 1. Занести в ячейку **B1** числовое значение аргумента x, например 0,5.
- 2. Активизировать ячейку В2, куда вставляется вычисленное значение функции.
- 3. Вызвать *Мастер функций* и в первом окне диалога выбрать из категории *Математические* имя функции *КОРЕНЬ*. Нажать *ОК*.
- 4. Во втором диалоговом окне в поле ввода аргумента нужно вставить имя функции для вычисления модуля (*ABS*). Для повторного вызова *Мастера функций* необходимо с помощью стрелки раскрывающегося списка выбрать имя функции *ABS*. Если в открывшемся списке ее нет, то выбрать строку *Другие функции* и выбрать *ABS*. (**Рисунок**

Рисунок 4. Выбор аргумента функции КОРЕНЬ

5. Аналогично вставляется аргумент функции *ABS* – имя функции *COS*, для которой указывается содержимое ячейки **B1** со значением переменной *x*. Набор закончить нажатием несколько раз кнопки OK, после чего в активную ячейку вставится вычисленное значение функции. Окончательный результат дан на **Рисунке 5**.

💽 🖬 🤊 т 🕅 т 🕅 Книга1 - Міс							
Глан	вная Вставка Разметка с	траницы Формулы Д	анные	Рецензирование	Вид		
1	Calibri - 11 -	A* A* = = **	-	Общий	*		
Вставить	ж к ч - 🕒 - 🖄	· <u>A</u> · E = = i f i	- 12	- % 000 📸	500 cons		
Буфер обмен	а 🕞 Шрифт	🕞 Выравнивани	. 6	Число	G		
B2	• (* f _x =	KOPEHb(ABS(COS(B1)))					
	А	В		С			
1	225	0	,5				
2	15	0,9367	'9				
3							
1							

Рисунок 5. Результат вычисления функции

Задание 3. Вычислить значения тригонометрических функций SIN, COS, TAN.

При вычислении тригонометрических функций нужно помнить, что в качестве значений аргумента используется *радианы*, а не *градусы*. Поэтому предварительно нужно градусы превратить в радианы с помощью функции *РАДИАНЫ*. Также есть возможность осуществить обратный перевод радиан в градусы посредством функции *ГРАДУСЫ*.

Решение задания в ниже данной таблице.

	A B		С	D	E			
1	Тригонометрические функции							
2	Аргу	мент	CIN	<u> </u>	TAN			
3	Градусы	Градусы Радианы		03	TAN			
4	0 0		0	1	0			
5	45	0,79	0,71	0,71	1			
6	30	0,52	0,50	0,87	0,58			
7	60	1,05	0,87	0,50	1,73			
8	90	1,57	1	0	1,63E+16			
9	110	1,92	0,94	-0,34	-2,75			
10	140	2,44	0,64	-0,77	-0,84			
11	160	2,79	0,34	-0,94	-0,36			
12	180	3,14	0	-1	0			

Порядок выполняемых действий:

- 1. Оформить шапку таблицы.
- 2. Ввести значения аргумента в градусах.
- 3. Перевести введенные градусы в радианы путем вставки в ячейку **B4** формулы: =*Радианы(А4)* и распространить по столбцу вниз.
- 4. Вычислить значения функций: в ячейке C4: =*SIN(B4)*; в ячейке D4: =*COS(B4)*; в ячейке E4: =*TAN(B4)*.
- 5. Округлить вычисленные значения до двух знаков после запятой с помощью кнопки *Уменьшить разрядность* в меню команды *Главная* (версия 2007) или на панели форматирования (версия 2003).

6. Выполнить форматирование таблицы.

Задание 4. Самостоятельно создать аналогичную таблицу для вычисления логарифмических функций *LN, LOG, LOG10, EXP* для значений аргумент от 1 до 10 с шагом 1.

Задание 5. Определить периметр и площадь треугольника, если заданы длины всех сторон.

Порядок решения задачи.

1. Постановка задачи с обозначением данных.

Дано: a, b, c – длины сторон треугольника. **Определить: p** - периметр треугольника; *s* – площадь треугольника. **Промежуточные величины**: отсутствуют в задаче.

2. Математическая модель задачи

$$p=a+b+c$$
 $s=\sqrt{(\frac{p}{2}*(\frac{p}{2}-a)*(\frac{p}{2}-b)*(\frac{p}{2}-c))}$

3. Структура таблицы:

	А	В	С	D	Е	
1	Определ	ение пери	иметра и п.	лощади треуг	ольника	
2	Исхо	одные дан	ные	Результат		
3	а	b	С	р	s	
4	2	5	4	11	3,80	
5	3	5	3	11	4,15	
6	4	7	8	19	14,00	

- 4. Порядок выполняемых действий:
 - оформить шапку таблицы;
 - ввести значения переменных *a*, *b*, *c*;
 - вычислить значение периметра *p* в ячейке **D4**: =**A4**+**B4**+**C4**;
 - вычислить значение площади *s* в ячейке E4:
 - =КОРЕНЬ(D4/2*(D4/2-A4)*(D4/2-B4)*(D4/2-C4));
 - выполнить форматирование таблицы.

Задание 6. Самостоятельно решить задачу: «Дан цилиндр с известными значениями объема и высоты. Определить радиус основания, боковую поверхность и полную поверхность».

Функции суммирования

Особенностью этих функций является то, что они имеют несколько аргументов, которые нужно указывать перечислением через точку с запятой, если данные расположены в несмежных ячейках, либо как диапазон ячеек при расположении в смежных ячейках.

```
1. Суммирование чисел, указанных в качестве аргумента – СУММ(список аргументов).
```

Например: a). =**CVMM(A8;B12;C5:C10;120)** – сумма чисел, расположенных в ячейках

2. Суммирование чисел, отобранных согласно условию –

СУММЕСЛИ(диапазон1, критерий, диапазон2).

Эта функция выполняется в два этапа:

• проверяется критерий в *диапзоне1* и отбираются нужные значения;

- вычисляется сумма чисел в *диапазоне2*, соответствующие отобранным значениям. Примеры записи функции:
- a) =СУММЕСЛИ(A1:A4;"<120";B1:B4) –подсчет суммы чисел в интервале B1:B4, причем выбираются только те строки, которые соответствуют значениям меньших 120 в интервале A1:A4.

в А1 -	100	в	B1 -	200
в А2 -	125	в	<i>B2</i> -	460
в АЗ -	90	в	<i>B3</i> -	300
в А4 -	150	в	<i>B4</i> -	690
Результат:		200+3	800=50	0

б) =СУММЕСЛИ(D1:D7;"инженер";E1:E7) – подсчет суммы значений в интервале E1:E7 соответствующих строке "инженер" в интервале D1:D7.

Примечания:

1. В качестве критерия могут быть:

- константы: число, если диапазн1 числовой; текст, если диапазн1 текстовый;
- выражение в *кавычках* с применением знаков сравнений: <, >, =, <= (меньше или равно), >= (больше или равно, <> (не равно). Справа от этих знаков используется только *число(">25"; "<>8" и т.п.)*.
- 2. Проверка критерия и суммирование можно производить в одном и том же диапазоне. В этом случае *диапазон2* можно опустить. Например, **=СУММЕСЛИ(C5:C20;">100")** подсчет суммы чисел *больших 100* из диапазона **C5:C20**.
- Задание 7. Дан список наименований товара с указанием объема, цены за единицу и поставщика. Определить:
 - 1. Стоимость всего объема каждого наименования.
 - 2. Суммарную стоимость всех наименований.
 - 3. Суммарный объем, доставленный указанным поставщиком.
 - 4. Суммарную стоимость, значения которых превышают заданную величину.

_	Α	В	С	D	Е	F
1						
2	Nº	Наименование	ние Объем Цена единицы Поставщик		Стоимость	
3	1	Товар 1	200	25	Титан	5000
4	2	Товар 2	250	30	Заря	7500
5	3	Товар 3	320	100	Заря	32000
6	4	Товар 4	180	120	Титан	21600
7	5	Товар 5	100	50	Стам	5000
8		71100				
9		570				
10	(53600				

Структура таблицы:

Выполняемые действия:

- 1. Оформить шапку таблицы.
- 2. Ввести исходные данные в столбцы А, В, С, D, Е.
- 3. Вычислить стоимость в ячейке F3: =C3*D3 и распространить вниз по столбцу.

- 4. Вычислить суммарную стоимость в ячейке F8: =CУММ(F3:F7) или применить кнопку для вычисления суммы Σ.
- 5. Вычислить суммарный объем поставщика "Заря" в ячейке F9:

=СУММЕСЛИ(Е3:Е7;"Заря";С3:С7).

 Вычислить суммарную стоимость, превышающую 10000 в ячейке F10: =СУММЕСЛИ(F3:F7;">10000").

Задание 8. Создайте самостоятельно таблицу для решения следующей задачи:

Дан список 10 сотрудников некоторой фирмы с указанием ФИО, должности, количества отработанных дней в месяце, величины однодневного заработка. Определить:

- 1. Величину заработной платы за месяц каждого сотрудника.
- 2. Суммарную зарплату всех сотрудников фирмы.
- 3. Суммарную зарплату сотрудников одной должности.
- 4. Суммарную зарплату сотрудников, отработавших неполный месяц.
- 5. Суммарную зарплату сотрудников, значения которых не превышают 8000 рублей.

В результате выполнения этих заданий вы должны:

- 1. Знать назначение стандартных функций и синтаксис их записи.
- 2. Уметь работать с мастером функций для их вставки в ячейку.
- 3. Знать особенности задания аргументов тригонометрических функций.
- 4. Уметь применять для решения задач функции суммирования.